metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.5D28, C23⋊C4⋊4D7, (C2×C28).7D4, (C2×C4).5D28, C22⋊C4⋊2D14, (C2×D4).12D14, (C2×Dic7).1D4, (C22×D7).1D4, C22.25(D4×D7), C22.9(C2×D28), C14.14C22≀C2, D4⋊6D14.1C2, (D4×C14).9C22, (C22×C14).18D4, C7⋊1(C23.7D4), C23.D7⋊2C22, C23.3(C22×D7), C23.1D14⋊2C2, C22.D28⋊1C2, (C22×C14).3C23, C2.17(C22⋊D28), C23.18D14⋊1C2, (C22×Dic7)⋊1C22, (C7×C23⋊C4)⋊5C2, (C2×C14).18(C2×D4), (C7×C22⋊C4)⋊2C22, (C2×C7⋊D4).3C22, SmallGroup(448,276)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C2×C14 — C22×C14 — C2×C7⋊D4 — D4⋊6D14 — C23.5D28 |
C1 — C2 — C23 — C23⋊C4 |
Generators and relations for C23.5D28
G = < a,b,c,d,e | a2=b2=c2=d28=1, e2=c, ab=ba, ac=ca, dad-1=eae-1=abc, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=cd-1 >
Subgroups: 988 in 160 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C4○D4, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C23⋊C4, C23⋊C4, C22.D4, 2+ 1+4, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, C23.7D4, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C23.D7, C7×C22⋊C4, C4○D28, D4×D7, D4⋊2D7, C22×Dic7, C2×C7⋊D4, C2×C7⋊D4, D4×C14, C23.1D14, C7×C23⋊C4, C22.D28, C23.18D14, D4⋊6D14, C23.5D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, D28, C22×D7, C23.7D4, C2×D28, D4×D7, C22⋊D28, C23.5D28
(1 8)(2 60)(3 75)(4 25)(5 12)(6 64)(7 79)(9 16)(10 68)(11 83)(13 20)(14 72)(15 59)(17 24)(18 76)(19 63)(21 28)(22 80)(23 67)(26 84)(27 71)(29 36)(30 103)(31 90)(32 53)(33 40)(34 107)(35 94)(37 44)(38 111)(39 98)(41 48)(42 87)(43 102)(45 52)(46 91)(47 106)(49 56)(50 95)(51 110)(54 99)(55 86)(57 78)(58 65)(61 82)(62 69)(66 73)(70 77)(74 81)(85 92)(88 109)(89 96)(93 100)(97 104)(101 108)(105 112)
(1 80)(2 16)(3 82)(4 18)(5 84)(6 20)(7 58)(8 22)(9 60)(10 24)(11 62)(12 26)(13 64)(14 28)(15 66)(17 68)(19 70)(21 72)(23 74)(25 76)(27 78)(29 95)(30 44)(31 97)(32 46)(33 99)(34 48)(35 101)(36 50)(37 103)(38 52)(39 105)(40 54)(41 107)(42 56)(43 109)(45 111)(47 85)(49 87)(51 89)(53 91)(55 93)(57 71)(59 73)(61 75)(63 77)(65 79)(67 81)(69 83)(86 100)(88 102)(90 104)(92 106)(94 108)(96 110)(98 112)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 73)(9 74)(10 75)(11 76)(12 77)(13 78)(14 79)(15 80)(16 81)(17 82)(18 83)(19 84)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 65)(29 109)(30 110)(31 111)(32 112)(33 85)(34 86)(35 87)(36 88)(37 89)(38 90)(39 91)(40 92)(41 93)(42 94)(43 95)(44 96)(45 97)(46 98)(47 99)(48 100)(49 101)(50 102)(51 103)(52 104)(53 105)(54 106)(55 107)(56 108)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 37 66 89)(2 88 67 36)(3 35 68 87)(4 86 69 34)(5 33 70 85)(6 112 71 32)(7 31 72 111)(8 110 73 30)(9 29 74 109)(10 108 75 56)(11 55 76 107)(12 106 77 54)(13 53 78 105)(14 104 79 52)(15 51 80 103)(16 102 81 50)(17 49 82 101)(18 100 83 48)(19 47 84 99)(20 98 57 46)(21 45 58 97)(22 96 59 44)(23 43 60 95)(24 94 61 42)(25 41 62 93)(26 92 63 40)(27 39 64 91)(28 90 65 38)
G:=sub<Sym(112)| (1,8)(2,60)(3,75)(4,25)(5,12)(6,64)(7,79)(9,16)(10,68)(11,83)(13,20)(14,72)(15,59)(17,24)(18,76)(19,63)(21,28)(22,80)(23,67)(26,84)(27,71)(29,36)(30,103)(31,90)(32,53)(33,40)(34,107)(35,94)(37,44)(38,111)(39,98)(41,48)(42,87)(43,102)(45,52)(46,91)(47,106)(49,56)(50,95)(51,110)(54,99)(55,86)(57,78)(58,65)(61,82)(62,69)(66,73)(70,77)(74,81)(85,92)(88,109)(89,96)(93,100)(97,104)(101,108)(105,112), (1,80)(2,16)(3,82)(4,18)(5,84)(6,20)(7,58)(8,22)(9,60)(10,24)(11,62)(12,26)(13,64)(14,28)(15,66)(17,68)(19,70)(21,72)(23,74)(25,76)(27,78)(29,95)(30,44)(31,97)(32,46)(33,99)(34,48)(35,101)(36,50)(37,103)(38,52)(39,105)(40,54)(41,107)(42,56)(43,109)(45,111)(47,85)(49,87)(51,89)(53,91)(55,93)(57,71)(59,73)(61,75)(63,77)(65,79)(67,81)(69,83)(86,100)(88,102)(90,104)(92,106)(94,108)(96,110)(98,112), (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,109)(30,110)(31,111)(32,112)(33,85)(34,86)(35,87)(36,88)(37,89)(38,90)(39,91)(40,92)(41,93)(42,94)(43,95)(44,96)(45,97)(46,98)(47,99)(48,100)(49,101)(50,102)(51,103)(52,104)(53,105)(54,106)(55,107)(56,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,37,66,89)(2,88,67,36)(3,35,68,87)(4,86,69,34)(5,33,70,85)(6,112,71,32)(7,31,72,111)(8,110,73,30)(9,29,74,109)(10,108,75,56)(11,55,76,107)(12,106,77,54)(13,53,78,105)(14,104,79,52)(15,51,80,103)(16,102,81,50)(17,49,82,101)(18,100,83,48)(19,47,84,99)(20,98,57,46)(21,45,58,97)(22,96,59,44)(23,43,60,95)(24,94,61,42)(25,41,62,93)(26,92,63,40)(27,39,64,91)(28,90,65,38)>;
G:=Group( (1,8)(2,60)(3,75)(4,25)(5,12)(6,64)(7,79)(9,16)(10,68)(11,83)(13,20)(14,72)(15,59)(17,24)(18,76)(19,63)(21,28)(22,80)(23,67)(26,84)(27,71)(29,36)(30,103)(31,90)(32,53)(33,40)(34,107)(35,94)(37,44)(38,111)(39,98)(41,48)(42,87)(43,102)(45,52)(46,91)(47,106)(49,56)(50,95)(51,110)(54,99)(55,86)(57,78)(58,65)(61,82)(62,69)(66,73)(70,77)(74,81)(85,92)(88,109)(89,96)(93,100)(97,104)(101,108)(105,112), (1,80)(2,16)(3,82)(4,18)(5,84)(6,20)(7,58)(8,22)(9,60)(10,24)(11,62)(12,26)(13,64)(14,28)(15,66)(17,68)(19,70)(21,72)(23,74)(25,76)(27,78)(29,95)(30,44)(31,97)(32,46)(33,99)(34,48)(35,101)(36,50)(37,103)(38,52)(39,105)(40,54)(41,107)(42,56)(43,109)(45,111)(47,85)(49,87)(51,89)(53,91)(55,93)(57,71)(59,73)(61,75)(63,77)(65,79)(67,81)(69,83)(86,100)(88,102)(90,104)(92,106)(94,108)(96,110)(98,112), (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,109)(30,110)(31,111)(32,112)(33,85)(34,86)(35,87)(36,88)(37,89)(38,90)(39,91)(40,92)(41,93)(42,94)(43,95)(44,96)(45,97)(46,98)(47,99)(48,100)(49,101)(50,102)(51,103)(52,104)(53,105)(54,106)(55,107)(56,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,37,66,89)(2,88,67,36)(3,35,68,87)(4,86,69,34)(5,33,70,85)(6,112,71,32)(7,31,72,111)(8,110,73,30)(9,29,74,109)(10,108,75,56)(11,55,76,107)(12,106,77,54)(13,53,78,105)(14,104,79,52)(15,51,80,103)(16,102,81,50)(17,49,82,101)(18,100,83,48)(19,47,84,99)(20,98,57,46)(21,45,58,97)(22,96,59,44)(23,43,60,95)(24,94,61,42)(25,41,62,93)(26,92,63,40)(27,39,64,91)(28,90,65,38) );
G=PermutationGroup([[(1,8),(2,60),(3,75),(4,25),(5,12),(6,64),(7,79),(9,16),(10,68),(11,83),(13,20),(14,72),(15,59),(17,24),(18,76),(19,63),(21,28),(22,80),(23,67),(26,84),(27,71),(29,36),(30,103),(31,90),(32,53),(33,40),(34,107),(35,94),(37,44),(38,111),(39,98),(41,48),(42,87),(43,102),(45,52),(46,91),(47,106),(49,56),(50,95),(51,110),(54,99),(55,86),(57,78),(58,65),(61,82),(62,69),(66,73),(70,77),(74,81),(85,92),(88,109),(89,96),(93,100),(97,104),(101,108),(105,112)], [(1,80),(2,16),(3,82),(4,18),(5,84),(6,20),(7,58),(8,22),(9,60),(10,24),(11,62),(12,26),(13,64),(14,28),(15,66),(17,68),(19,70),(21,72),(23,74),(25,76),(27,78),(29,95),(30,44),(31,97),(32,46),(33,99),(34,48),(35,101),(36,50),(37,103),(38,52),(39,105),(40,54),(41,107),(42,56),(43,109),(45,111),(47,85),(49,87),(51,89),(53,91),(55,93),(57,71),(59,73),(61,75),(63,77),(65,79),(67,81),(69,83),(86,100),(88,102),(90,104),(92,106),(94,108),(96,110),(98,112)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,73),(9,74),(10,75),(11,76),(12,77),(13,78),(14,79),(15,80),(16,81),(17,82),(18,83),(19,84),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,65),(29,109),(30,110),(31,111),(32,112),(33,85),(34,86),(35,87),(36,88),(37,89),(38,90),(39,91),(40,92),(41,93),(42,94),(43,95),(44,96),(45,97),(46,98),(47,99),(48,100),(49,101),(50,102),(51,103),(52,104),(53,105),(54,106),(55,107),(56,108)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,37,66,89),(2,88,67,36),(3,35,68,87),(4,86,69,34),(5,33,70,85),(6,112,71,32),(7,31,72,111),(8,110,73,30),(9,29,74,109),(10,108,75,56),(11,55,76,107),(12,106,77,54),(13,53,78,105),(14,104,79,52),(15,51,80,103),(16,102,81,50),(17,49,82,101),(18,100,83,48),(19,47,84,99),(20,98,57,46),(21,45,58,97),(22,96,59,44),(23,43,60,95),(24,94,61,42),(25,41,62,93),(26,92,63,40),(27,39,64,91),(28,90,65,38)]])
49 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 7A | 7B | 7C | 14A | 14B | 14C | 14D | ··· | 14L | 14M | 14N | 14O | 28A | ··· | 28O |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | 14 | 14 | 14 | ··· | 14 | 14 | 14 | 14 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 28 | 28 | 4 | 8 | 8 | 28 | 28 | 28 | 28 | 56 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | ··· | 8 |
49 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D7 | D14 | D14 | D28 | D28 | C23.7D4 | D4×D7 | C23.5D28 |
kernel | C23.5D28 | C23.1D14 | C7×C23⋊C4 | C22.D28 | C23.18D14 | D4⋊6D14 | C2×Dic7 | C2×C28 | C22×D7 | C22×C14 | C23⋊C4 | C22⋊C4 | C2×D4 | C2×C4 | C23 | C7 | C22 | C1 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 6 | 3 | 6 | 6 | 2 | 6 | 3 |
Matrix representation of C23.5D28 ►in GL6(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 27 | 0 |
0 | 0 | 1 | 0 | 28 | 28 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 1 | 28 | 28 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 27 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 1 | 28 | 0 | 28 |
0 | 0 | 1 | 28 | 28 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
16 | 18 | 0 | 0 | 0 | 0 |
22 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 27 | 0 |
0 | 0 | 0 | 0 | 28 | 1 |
0 | 0 | 1 | 28 | 28 | 0 |
0 | 0 | 1 | 0 | 28 | 0 |
6 | 18 | 0 | 0 | 0 | 0 |
19 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 0 | 0 | 0 |
0 | 0 | 0 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 17 |
0 | 0 | 0 | 0 | 17 | 0 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,28,0,0,27,28,28,28,0,0,0,28,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,0,0,27,28,28,28,0,0,0,0,0,28,0,0,0,0,28,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[16,22,0,0,0,0,18,23,0,0,0,0,0,0,1,0,1,1,0,0,0,0,28,0,0,0,27,28,28,28,0,0,0,1,0,0],[6,19,0,0,0,0,18,23,0,0,0,0,0,0,17,0,0,0,0,0,0,17,0,0,0,0,0,0,0,17,0,0,0,0,17,0] >;
C23.5D28 in GAP, Magma, Sage, TeX
C_2^3._5D_{28}
% in TeX
G:=Group("C2^3.5D28");
// GroupNames label
G:=SmallGroup(448,276);
// by ID
G=gap.SmallGroup(448,276);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,219,226,570,1684,438,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=1,e^2=c,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a*b*c,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations